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Equations are derived, with the aid of boundary distribution functions, for a 
description of mass, momentum, and energy balance at the boundary between media 
in a polyphase stream. 

The problem of interaction of polyphase streams with various bodies is quite important, 
inasmuch as local strains and erosion greatly influence the effectiveness of thermally pro- 
tective coatings and the flow pattern near bodies in a stream [i, 2]. This problem arises in 
the formulation of coupled boundary conditions for modeling polyphasestreams [3]. Unlike in 
study [3]Z, in this study will be considered flow of a polydisperse polyphase stream past a 
body with possible change in the number of particles and in their internal state. 

Macrocharacteristics of Interaction. During interaction of particles of condensate phase 
in the oncoming stream with the surface of a body, there can occur following processes: rl) 
scattering, i.e., reflection of incident particles by the surface, with or without change in 
their mass or internal state; 2) erosion, i.e., wear of the body surface by the stream, form- 
ing a suspension of the surface material as well as of the condensate phase earlier deposited 
on the surface; 3) entrapment, i.e., retention of solid or liquid particles in the stream at 
the interface between the two media, following their penetration depthwise into the body ma- 
terial, their adsorption, etc; 4) secondary wear of body material by the stream as a result 
of various physicochemical processes in the body bulk as well as at the body surface, also 
flow of droplets, rollover of particles, etc. All these modes of interaction between the 
stream and the body material are, naturally, intimately interrelated. 

Following the procedure in another study [4], we introduce the functions HJi(m i, Uj, 
xj § xi, t, T) characterizing the distribution density of streams of scattered particles, 

i(ui, uj, xj § x i, t, T) characterizingthe distribution density of streams of eroded parti- 
cles, and li(ui, xi," t) characterizing the distribution density of streams of spontaneously emitting 
particles. Here x = ~, x~, xs}. The thus introduced functions are probability distributions of 
respective events when a particle with velocity uj arrives at point xj at an instant of time 
t and causes emission of particles with velocity ui from the point x i which a period of 
time T. 

All these functions have been appropriately normalized [4, 5]. Integrating the distri- 
bution densities HJ i and WJ i with respect to the velocity of emitted particles yields [5] - 

i 
in the absence of secondary wear. In the general case, however, 

+ s , ]  = 1. 
] 

Let us consider an area element with its normal 1 (Fig. i). Since in our case the char- 
acteristic length of the particles-and-surface interaction space is smaller than the radius 
of curvature of the body surface, one can regard the area element as being plane. Within a 
unit of time the particles impinging on this unit of surface area impart to the latter the 
following amounts of mass, monentum, and energy: 
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TABLE 1. 
Phase Stream Past Cone 

kg/m 2 t~p, J/kg Qs J/see [ mE' �9 see ~g#ee x, N COp 

0,0798 2,9"10' I 2,34.10~ I0,798 11,96 4,90.I0-5 

Characteristics of Interaction during Flow of Two- 

QII S , 
J~tsdc 
456,89 

Q,S, J/see 

2,29.104 

We now introduce the function 

.,~ (u.  uj, x~-,- x~, t, ~) = / / ~  + lV~, 
an d express the amounts of mass, momentum, and energy worn off from unit surface area as 

Ul>O ul>O 

A~I = S d'~ S dx {n, ]u~,[ ,t" M{m*uidu~ + S lim#,du,} , 
Ul>O ul>O 

(_.> + +,,,)d~ 

+ f 
ul>O 

Then the amounts of mass, momentum, and energy received by that unit surface area during its 
interaction with particles of the j-th fraction and removal from it of particles of the i-th 
fraction will be 

Li  (uj)  = nj  luJ~l mj  - -  A~,, P{ (u j) = n~ lu~,l u j  - -  A~:; 

Q{ (u j ) =  nj luj~l ~ r  - ALi. 

Now adding the fluxes of all emitted particles will yield the result of action of the j-th 
fraction on the surface, namely 

i L l(uj)= 2 L i  (u/); pi(u/) = X p~ (u/); Qi(uj)= 2Q~(u~)" (1) 

In order to calulate the total fluxes to the surface, we introduce the distribution 
function fj(u], xj, t) in the oncoming stream. Multiplying expressions (i) by function fj 
(ttj, xj, t) and then integrating with respect to velocities uj, with ui< 0, yields 

L/= S Li(u:)f-jdus S Pi(u:)[,du,; Q:= y QJ(u:)f:duj. (2) 
ul<O ul<O ul<O 

Adding up Eqs. (2) for all fractions of impinging particles yields the total fluxes of mass, 
momentum, and energy per unit surface area 

L = p =  Q =  <3) 
/ ] i 

/x 

~ f  Fig. i. Schematic diagram of 
interaction process. 

177 



(pv)p 
i 

4o,'~[ 

o, o/z 

qmo 

~ o, ozs 

! 

qot5 

Fig. 2. Dependence of mass flux 
(0V)p, kg/(m2-sec) (curve i) and 
of thermal flux QT, J/(m2~ 
(curve 2) on interaction multi- 
plicity n_/n+ during precipitation 
of micron spheres on hot substrate 
in neutral atmosphere. 

Assuming that the mixing length for particles at the surface is much smaller than the 
characteristic lengths of the interaction space and the interaction time is much shorter 
than the characteristic times, i.e., assuming a Markov process [6], we can represent rela- 
tions (3) in the form 

L = ~ Z m  i ~ f~{njlujtl[6u -m--L ]M~du,] mi ] Iidu,}duj, 
i i ut<o mj uz> o l mj ut> 0 

{ [ ] } P= ~ . ~  mj ~ f, n, lu, z] u,Si.J S M{u~du, mi ~ I iu~du~ d u , ,  (4) 
] i ul<O ITL] ul>O Inj ul>O 

i , ,,<0 t 2 ~ j" Miu~dur-- m~ ] I!u~du,jdu,, 
.l>o 2 ul> o 

j i ul<O Ul>O 

For convenience, the total energy in the system of equations (4) has been split into kinetic 
energy QK and thermal energy QT" In our case the interaction functions are 

H~(u~, uj, t); W~(u~, uj, t); I~(u~, t). 

Coupled Boundary Conditions. The quantities L, P, QK, and QT will obviously appear as 
components in the boundary conditions for the coupled problem 

- -  %t - -  
OT 4 4 

= qw -{- e6c (Tp - -  T:o) + Qchem + Qa + Q,, Ol 
N K 

Qchcm = ~ (R'awq=w)g -[- Z (Rr~wq~w)p, 
a=1 ~=I 

(pv)w = (pv)g + (or)p; (pv)p = L, 

o = o~!~ + ~wg § ~wp; Twp = P. 

(5) 

(6) 

(7) 

Here Qchem is the energy of chemical transformations at the surface evolving e . . . . . .  of 
coupling of N reactions in the carrier medium and K reactions in the incident particles. The 
stress o at the boundary between the media consists of the intrinsic stress in the material 
(o~sls-term) and the frictional stress (~wg + ~wp )" A more precise notation to account for 
the terms representing the interaction ot the carrier medium andthe body surface (thermal 
flux qw, (pv)g, etc.) can be found in an earlier study [7] and is not relevant to the prob- 

lem under consideration here. 

Radiation Model of Interaction. As an example we will consider the case where all dis- 
tribution functions can be described with the radiation model of interaction 

H{ = ~o ( ~ ,  d ,  . . . .  ) 6 [ u ~  - -  Umo(U~ ~ dl, d2, . �9 .)], 

117~ ~ (b~, b~, .) [n~--  u ~ t  (uj , b~, b~ . . . . .  )1, 

l i  = ~ (al, a~ . . . .  ) 8 [u~ -- u ~  (al, a2 . . . . .  )]. 

1 7 8  



The interaction parameters (ai, bi, di) can in this case be the surface roughness, the strength 
characteristics, etc. Functions vo, u~, ~= depend on the impact velocity a~d the incidence 
angle as well as on the interaction parameters ai, bi, di. This model of interaction conforms 
with reality when the interaction of particles and the carrier medium is weak (treatment of 
materials, encounter of descending craft with cloud of fairly large particles [I, 8]). Then 
with a 6-function distribution of particles in the outer stream and with ~i = ~j = 0, we 
have 

2 

i i i i " �9 

Qr = tt B p j E j - -  < bi~ } 9i Ei ; ?is = 9 J -  (b i i  > Pi ; 
�9 " n i  tli 

( bi.~ } = a.~ --~ n~ lu.~l ( ,% (um~) } ; aj = < % [umo (u~o)] ,-@ v~[ Ura~ ( @ ' ) ] )  . 

Polezhaev's Model [8]. It is evident from Eqs. (8) that, when E i = Ej = E, then 

Q = Q~ + Q~ = (p%%; hp = ~ d / 2  + e. 
i 

In this case, therefore, h- can be treated as the effective enthalpy of breakdwon as a re- 
sult of impact by particle~ [8]. When the kinetic component of energy is much larger than 
the thermal component 

~ u f / 2 ~ E ,  
1 

h o w e v e r ,  t h e n  we h a v e  t h e  e f f e c t i v e  b r e a k d o w n  e n t h a l p y  a c c o r d i n g  t o  P o l e z h a e v  [8]  e x a c t l y  
e x c e p t  f o r  t h e  c o e f f i c i e n t .  

B u s r o y d ' s  Model  [ 9 ] .  Assuming  t h a t  P i C p i  = 0 j C p j ,  one  can  o b t a i n  t h e  r e l a t i o n  

QT = u~zp~cpj T j - -  < b~ > " Ti , 
�9 . n i 

identical, except for the coefficient, to the relation [9, i0] for the thermal flux of par- 
ticles . Within the framework of the radiation model then, the boundary conditions (5) and 
(6) become 

2 OT 4 4 u p  
- -  ~t --~ = qw "-t- eae (To - -  Tw) @ ~ h p  - - ~  @ aTm ~ (Tp -- Tw) -~- Q them' 

(pv)~=(pv)g + ~z~uop; mp=uzp~, 

(8) 

(9) 

with the form of the accommodation coefficients aK, aT, am evident from the relations (8). 

We will analyze two special cases in the approximation of the radiation model. 

I. Flow past Cone. A two-phase stream flows at zero angle of attack past a cone with 
a vertex half-angle ~, assuming that 

E i ~ E j = E  ; ~ ln~==l;  v f = 0 ,  

and that there is no secondary wear with the number of incident particles equal to the number 
of emitted ones. We then have 

(9v)p= u| sin [3; Pz = u~? sin 2 [3; % p  := u~? sin 1~ cos [3; 

3 U~ 
Qzr = - - 7  ? sin [3; O~ = u| sin [3; E= --  co=Too; y = ~ ?1i 

assuming that uj, U i, and 1 lie in one plane. Assuming further that pj z Pi = P=, we obtain 

(ov)p = u p~ (u%) sin [3; ez = u% p~ (ul) sin~ [3; 

3 (i0) 
T~p----u -~ f%~p (u~)sin [3 cos[3; Q,~ = ~a~ p~ (u h~.) sin [3; 

Z 

Q T = u  P ~ q ~ ( u ~ ) E  sin~, 
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where ~(u k) is the interaction function. A survey of published data indicates that k = 
0-6. Under the given assumptions, relations (I0) essentially combine the models of brittle 
and plastic erosion [ii]. The total fluxes of mass, monentum, and energy are in this case 

Letting S = const and ~(u~) = %+ ~l(U~---Ug)h h + ..., we obtain the total fluxes, the interaction 
force, and the drag coefficient CDp associated with impact on a cone by particles, all given 
in Table 1 for 8 = 45 ~ o~ = i0, u~ = 107, Ug = II0, k = 2, ~o = i0 -4, ~, =--i0 -s, S = i0, 
and E~ = 3"105 (all in the International System of units). These values of some of the param- 
eters have been determined experimentally [12] on the assumption that S = const. 

2. Flow past Sphere. Inasmuch as CDp = 2X(mpnpDU2) -x the analogy to flow past a cone 
under the same assumptions yields 

cDp = const u~ + --D-- (u~ - -  u~) + . . . U-2, 

and from here the relation for the drag coefficient in the Stokes mode of flow 

24 II 
% = + - +...1. 

It is thus evident that, within the framework of the radiation model and under the assumptions 
made here, the effect of interaction ofparticles on the interaction coefficient for a sphere 
is expressed by the second term in the Taylor series expansion of the interaction function 

In  the  a p p r o x i m a t i o n  of  t he  r a d i a t i o n  model ,  t h e r e f o r e ,  one can d e t e r m i n e  t h e  b a s i c  mac- 
r o c h a r a c t e r i s t i c s  o f  i n t e r a c t i o n  w i t h  t h e  a id  of  two c o e f f i c i e n t s  most  r e a d i l y  o b t a i n e d  ex -  
p e r i m e n t a l l y .  

Model of Equilibrium Precipitation. We now consider the other extreme case, namely that 
of Maxwell distribution in the outer stream. We assume that the effects of scattering and 
erosion are negligible, with secondary wear accounted for in the quasiradiation mode. Such 
an approach is valid for small particles (aerosols) with low concentration and low velocity, 
those reaching the body surface having moved with direction control (rollover, swinging, mi- 
gration, etc.) and possible chemical transformations [13]. When 

[J = 2k~Tj " exp 2kTj ] ~ 

we then have for monodisperse incident and migrating fractions 

(PV)P=-~-(v/2kT+m+ 

m+ 

p_n+ < v2 > =s/2/ 
p+n_ / 

< %'2 > n 3 / 2 E - ~  " p_n+ 
p+n_ / 

Here k is the Boltzmann constant and0 < 0+ ~ ~/2~ 0 E O_ E ~. It is hardly worthwhile to 
discuss the other terms p and QK in this approximation, since they have little effect on the 
interaction process. 

Assuming, along with already known assumptions [14], that the rate of a chemical reac- 
tion can be expressed as 

Rp = kp~ (n+)exp (_ E/(RTw)), 

and t h a t  t he  v e l o c i t y  o f  t he  c a r r i e r  medium i s  v e r y  low,  a l s o  t h a t  t h e  medium i s  c h e m i c a l l y  
n e u t r a l ,  c o n d i t i o n s  (5) and (6) become 

OT 
- -  X ~ -  = Q, + Q*kp~ (n+) exp (--  E/(RTw)); (pv)w = (pv)p. 

As an example we w i l l  c o n s i d e r  p r e c i p i t a t i o n  o f  p a r t i c l e s  o f  m ic ro n  s i z e  on a p l a t e  
d u r i n g  i n t e r a c t i o n  c h a r a c t e r i z e d  by p a r a m e t e r s  ( i n  t h e  I n t e r n a t i o n a l  System o f  u n i t s )  
p+ = 2, m+ = 0.5-10 -*6 , T w = 1500, Q* = 55.10", p- ffi 2, Cp = i0", n+ = 4-10", E/R = 5-104 , 
with the assumptions that T+ = T_, ~(n+) = rub, and 9a = const/n. = i0-*' The dependence of 
(pV)p and QT on the interaction multiplicity n_/rur is depicted in Fig. 2. 
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This demonstrates that the process of heat and mass transfer initiated by particles 
can, in the approximation of their Maxwell distribution in the outer stream without erosion 
and scattering, be described with the aid of only one constant which must be determined 
experimentally. 

NOTATION 

xl, x=, x~, coordinate axes; u.,~ velocity of incident particles; ui, velocity of emit- 
ted particles; t, time; r, delay ti~e;mj, mass of particles in the j-th fraction, kine, or 
type; n, countable number of particles in unit volume; E, internal energy, activation energy; 
~, potential energy, chemical affinity energy, etc.;f, distribution function in the outer 
stream~ QK and QT, respectively, kinetic component and the thermal component of energy; ~, 
thermal conductivity; T, temperature; q, thermal flux; R~g, Rag , RBp, ~Rsp, respectively, 
rates and the heats of independent heterogeneous chemical-reactions between the gas and the 
immersed surface, between the material of particles and the material of the surface; R, gas 
constant; Q*, thermal effect; a, stress; Oc, Stefan--Boltzmann constant; e, emissivity; (pv), 
mass flux; L, mass flux; P, momentum flux; Q, energy flux; Tw, frictional stress; ko and kl, 
coefficients; Umo, Uml , Um2, velocities of dominant emission; ai, bi, di, interaction param- 
eters;%and vi, interaction functions; H*, h, enthalpy; Cp specific heat; ~, accommodationco- 
efficient; S, surface area; X, force; cD, drag coefficient; D, characteristic dimension; U, 
characteristic velocity; Re, Reynolds number; O, incidence angle; 0, density; H, W, I, 
boundary distribution functions; Si, probability of entrapment. Subscripts: w, surface; 
p, particle; g, gas; j, precipitating fraction, i, emitted fraction; l, normal component; 
~, outer stream; (+), precipitating fraction; and (--), migrating fraction. 
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